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ABSTRACT: Within this work an automated algorithm for the modelling of photovoltaic systems solely based on 

smart meter power readings of the system is proposed assuming low cost, stationary rooftop photovoltaic systems. As 

an example system, data from a nearly horizontal (7° tilt) thin film system is used for method validation. The 

photovoltaic power output modelling results are compared to an individually engineered INSEL® model and a Linear 

Regression (LR) Model. The resulting auto model output is discussed in the context of day ahead and intraday 

photovoltaic power forecast using no-cost / low-cost irradiation information. This work presumes that the 

characteristics of a photovoltaic system can be extracted from its clear sky /best system power curve. The extracted 

best system curve can be used directly as a model by scaling the clear sky power output with the ratio of the radiation 

to the clear sky radiation. The clear sky/best system curves are constructed by identifying the power maximum for a 

given time of the day for a data set of a sample number of previous days. 

The auto model is comparable to the fitted INSEL® model and the linear regression (LR). The yearly error metrics for 

estimation of accuracy of the simulation, concerning 5-minute power values, are between -0.3% for the LR model, 

3.7%  for the INSEL® model and 4.7% for the auto model. Also the annual RMSE and MAE of the auto model (74.8 

W and 27.4 W) are comparable to the LR (66.8 W and 26.2 W) and the INSEL® fit (68.1 W and 25.5 W). The auto 

model operates with less input data (generated energy only) and no knowledge about the engineering, design or 

surroundings of the PV system while yielding similar simulation results as conventional methods. 
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1 INTRODUCTION AND MOTIVATION 

Energy systems in buildings and districts become 

more complex and diverse due to the available 

technologies and the ongoing sector coupling between 

electricity, mobility and heat. Additionally energy 

efficiency regulations encourage or even enforce local 

energy generation using renewable energy technologies 

[1][2]. To optimize the local electric infrastructure 

expenditure, load management becomes an integral part 

of future electricity grid designs, especially in the private 

sector targeting electrical installations behind the grid 

connection point. To integrate local photovoltaic 

production with flexible loads from sector coupling 

applications in the building, a low cost photovoltaic 

modelling and prediction is needed to assist the local 

energy and load management system. To ensure a low 

cost installation of the energy management system, 

operation and adaption due to degradation of the solar 

cells and the system, the modelling of the photovoltaic 

system needs to be highly automated and based on as few 

parameters as possible. These need to be configured 

without special photovoltaic knowledge by electricians 

without any additional training. 

Various commercial (e.g. PV*SOL1, INSEL®2, 

PVsyst3, HOMER Pro®4) and open source tools (e.g. 

PV_LIB5 Toolbox) are available to model the behaviour 

and energy generation of a photovoltaic system mainly 

before system installation. This allows for building 

business cases and scaling renewable energy generation 

systems (e.g. mini grids or battery storage systems). 

Across these tools, a detailed knowledge about the  

                                                                 
1 https://www.valentin-software.com/ 
2 http://www.insel.eu/ 
3 http://www.pvsyst.com/en/ 
4 https://www.homerenergy.com/ 
5 https://pvpmc.sandia.gov/applications/pv_lib-toolbox/ 

 
Figure 1: Roof top photovoltaic system at DLR Institute 

of Networked Energy Systems in Oldenburg 

photovoltaic system and the geographic lcation is 

required for the modelling. The pre-installation models 

are usually not fit to be used for operational optimisation, 

as installation changes need to be manually changed 

within the photovoltaic system model. 

2 DATA 

Data from December 1st 2016 until December 31st 

2017 is used for evaluation and training purposes. Due to 

measurement errors in the photovoltaic system, the 

period from September 2nd 2017 until September 17th 

2017 is replaced with data from 2011 of the same dates to 

achieve a full year functional dataset. The December 

2016 time frame is only used for the automated 

modelling as a pre-training phase. All available data has 

been checked for plausibility. 
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2.1 Photovoltaic System 

The reference photovoltaic system used in this work 

is located at the DLR Institute of Networked Energy 

Systems in Oldenburg, Germany6 (see authors contact for 

address and Figure 1). The roof top photovoltaic system 

is facing south-west (237°) with a 7° tilt. 

The system uses 12 Schott ASi95 modules for energy 

generation with a nominal total system power generation 

of 1140 WP. The modules are rated with a nominal cell 

efficiency of 6.6% at standard test conditions (STC). The 

module size is 1.108 m x 1.308 m = 1.499 m² resulting in 

an estimated total module area of 17.4 m² - ignoring 

additional installation gaps between modules. The 

resulting calculated module efficiency is 6.55%. For the 

year 2017 782.9 kWh of electricity are generated. 

A SMA Sunny Boy 11007 is used as inverter for grid 

connection. A SMA Sunny Sensorbox is mounted in the 

plane of the photovoltaic modules to collect additional 

temperature and radiation information. The data is 

collected using a SMA Sunny Webbox configured to 5 

min data interval. 

For the manual system modelling, original system 

component data sheets are available for all system 

components. 

2.2 Weather Measurements 

Publically available reference weather measurements 

from the University of Oldenburg8 are used as reference 

weather data for the system modelling. The weather 

station is located 32 m above sea level atop the main 

university building9. The weather station and the 

photovoltaic system are 1000 m apart. Weather data is 

publicly available in 30 min intervals since July 2003. 

2.3 Data Resume 

The plotted solar radiation of the given data set for 

the year 2017 versus the measured power of the 

photovoltaic system is shown in figure 2. The data points 

fit the simple linear regression of P = 0.0474 G with a 

coefficient of determination of 85% - resulting in a 

system efficiency of 4.74%. 

The correlation between the measured radiation and 

the photovoltaic system power is given most of the time. 

The distance between the radiation measurement and the 

photovoltaic system locations is never the less visible in 

the wide scattering of the data points. 

3 METHODOLOGY 

For the Linear Regression Model (LR) the linear 

regression from section 2.3 is used. 

Based on the described data set and system 

information, a static INSEL® model (manual model) of 

the photovoltaic system is designed. The manual model is 

benchmarked against the training data. The received 

benchmark is therefore reflecting the best case model 

performance for a full year model scenario.  

The algorithm based automatic model (auto-model) is 

using only power and location information to create a 

model of the photovoltaic system (details see below). 

Thirty days of data from December 2016 are used to pre-

train the auto-model, allowing for a full evaluation of the 

2017 dataset. The same benchmark parameters are 

                                                                 
6 53°09'03.8"N 8°09'59.5"E, https://goo.gl/maps/ewzJ1s5zcXy 
7 Serial number 2000689124 
8 http://www.uni-oldenburg.de/wetter/ 
9 53°08'51.4"N 8°10'48.4"E, https://goo.gl/maps/xiDm3Pgxa3m 

calculated as for the manual model. The dataset had some 

missing values (2nd – 18th of September and 11th – 13th of 

December) which were replaced by values from the year 

2011 from the same PV system.   

To describe the performance of the models the mean 

absolute error (MAE, eq. (1)), the root mean square error 

(RMSE, eq. (2)) and the simulation error (ΔE, eq. (3), [3]) 

are calculated using power values from the measurement 

PM, the power values from the model simulation PS and 

the number of data points n. 

 
The results from the linear regression model and the 

manual model are used as a reference for the evaluation 

of the performance of the auto-model. The modelling 

results of both models are created by independent 

research teams to reduce the chance of result-biasing. 

4 RESULTS 

4.1 INSEL® Model  

Two INSEL® models where created for comparison: 

the first solely build on database values and the second 

by matching the power measurements with the radiation 

measurements thus analysing the system performance. 

The block diagram of the created INSEL® models is 

shown in Figure 3.  

 Block FROM contains a reference to the input data 

with global horizontal radiation (W/m²) and ambient 

air temperature (°C) for the whole year 2017.  

 Block PVAI returns electric current and temperature 

of the PV modules depending on climate data and 

PV voltage. Calculation of the electric current is 

based on a modified one-diode model. The 

parameters of the block are given in Table 1. 

 
Figure 2: Measured solar radiation versus measured PV 

system power. The plot shows 105120 data points in 

2017 at a resulting time resolution of five minutes. 

 
Figure 3: Block diagram of INSEL® model 
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Table 1: Characterization table of the block PVAI with 

the fitted parameters 

Fitted Parameters  

Number of cells in series per module 24 

Number of cells in parallel per module 3 

Single cell area 0.0201 

Single module area 1.449 

Coefficient of short-circuit current density 0.113206+00 

Temperature coefficient of short-circuit 

current 

0.568527E-04 

Merten parameter 0.547033E+01 

Built-in voltage 0.120437E+07 

Coefficient of saturation current density 0.446160E+01 

Temperature exponent of saturation 

current density 

0.457965E+01 

Band gap 0.152050E+01 

Diode ideality factor 1.791466 

Series resistance 0.44343E-03 

Parallel resistance 0.110715E+01 

Module tolerance plus 5.0 

Module tolerance minus -5.0 

Characteristic module length 1.308 

Module weight 18.000 

Absorption coefficient 0.70 

Emission actor 0.85 

Specific heat of a module 900.0 

Nominal operating cell temperature 47.0 

Single cell voltage error tolerance 0.100000E-02 

 

 Block MPP calculates maximum power points of the 

PV system under different climate conditions. This 

block operates in a combination with a block TOL 

(top of loop) 

 Block IVP simulates the operation of the inverter and 

its losses and returns ac power produced by the PV 

system.  

 Block TO gathers selected results after running the 

simulation and saves them into a file. 

The block PVAI contains standard parameters, which 

need to be fitted for amorphous silicon solar modules and 

also for PV systems that have already been taken into 

operation in order to take a degradation of the modules 

into account.  

The parameters of the block PVAI presented in the 

characterization table above were fitted on measured 

data: electric current and voltage of the real PV system, 

global horizontal radiation and air temperature measured 

for the whole year 2017. Then this fitted block was 

integrated in a model (see the block diagram above) to 

simulate a time series of the PV power over the year. In 

order to define the effect of the fitting, the block PVAI 

with the standard values of the parameters and values 

only from the datasheet, i.e. without fitting, was also be 

used to simulate PV power over the year. 

4.2 Auto Model 

The approach of the auto model [8] deals with the 

assumption to forecast and model the power generation 

of a PV system without knowledge about the orientation 

or any parameters of the modules and the inverter. The 

model only works with historical measured PV power 

data. The flow chart Figure 4 shows how the auto model 

works. 

To predict/model the generated power of the next day 

the auto model only uses measured PV power data from 

the last few days. Therefore, PV data from the 1st 

December 2016 until the 31st December 2017 were used 

from the PV system which was described in chapter 2.1. 

To find the best system power curve for the next day, 

the algorithm takes a sample number of PV data from 

previous days (PD) and calculates the maximum value 

for every time step (288, 5-minutes resolution) of all 

chosen previous days. Thereof results the best system 

power (PBS) as shown, for the example of six previous 

days, in Figure 5. 

To model and scale the PV power (PMO) and make 

the auto model comparable to the INSEL model and the 

linear regression, the PBS was scaled by the ratio of the 

measured irradiance GHI (GHIMS) (Global Horizontal 

Irradiance) and the clear sky GHI (GHICS) irradiance. 

The comparison of the PMS curve, the PBS curve and the 

PMO curve is presented in Figure 6 for the example of 6 

previous days. 

To find the optimum of how many days to look back 

to find the ideal PBS, all calculation steps were repeated 

thirty times previous days and the calculation of 365 PBS 

 
Figure 4: Flow chart of the auto model 

 
Figure 5: example of building the best system power 

curve of six previous days 

 
Figure 6: Comparison of the measured power PMS and 

the auto modelled best system power curves PBS and 

model power curve PMO.  
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Figure 7: Simulation error from the auto model 

simulation of one year as selection criteria for the number 

of PD. 

 
Figure 8: monthly energy output of the PV system 

simulated with different models in comparison with the 

measured energy output from PV system for year 2017. 

curves. The selection criteria for the optimal number of 

previous days were the minimum simulation error or 

rather the RMSE (as seen in eq. 1) and MAE (eq. 2) 

between the modelled power and the measured power as 

shown in Figure 7. 

From these results it was suggested that the optimal 

number of previous days is 6. Another important point is 

to choose PD > 1 so that persistence should exclude and 

also not to go too far in the past. This have a negative 

effect with regards on seasonal impacts of time-

dependents increasing or decreasing irradiance/power. 

4.3 Linear Regression Model 

The linear regression model described in section 2.3 

is used as a most simple model for the photovoltaic 

system. This model requires radiation and output power 

as input parameters and cannot be created independently 

of weather data. The model is forced to 0 W power 

output PLR at 0 W/m² of solar radiation G by omitting a 

constant factor. The resulting linear regression is shown 

in eq. (4). 

PLR  = 17.4 m² * 0.0474 * G (4) 

The MAE for this model is 26.3 W and the RMSE is 

67.2 W based on the training data set of 2017 values. 

4.4 Simulation results 

The results of the linear regression approach, INSEL 

simulations with and without fitting of the block PVAI 

and auto model were evaluated and compared with the 

measured power of the PV system (see Fig. 8). 

When the block PVAI was not fitted, the INSEL 

software overestimated the power of the PV system 

dramatically. INSEL didn’t take the features of the 

amorphous Si and the degradation effect into account. A 

7 year old PV-system requires manual adaption of the 

Table 2: Statistical metrics for estimation of the accuracy 

of the simulation (concerned power values) 

 MAE RMS Simulation 

error ΔE Linear 

regression 

2

6,2 

W 

66.8 

W 

-0.3 % 

INSEL 

datasheet 

6

0,9 

W 

130.4 

W 

61.5 % 

INSEL fit 2

5,5 

W 

68.1  3.7 % 

Auto 

model 

2

7,4 

W 

74.8 

W 

4.7 % 

Table 3: Statistical metrics for estimation of the accuracy 

of the simulation (concerned energy values) 

 Lin. 

regressio

n 

INS

EL 

datashee

t 

IN

SEL 

fit 

Au

to 

model 
Simulation error [%] 

Mean 

value 

41,01 115,

82 

27,

39 

14,

68 Minim

umm 

-

27,47 

5,11 -

86,29 

-

89,95 Maxim

um 

2784,

88 

4610

,26 

28

26,41 

17

19,14 MAE [Wh] 

Mean 

value 

2,18 5,08 2,1

2 

2,2

8 Minim

um 

0,14 0,09 0,0

8 

0,0

6 Maxim

um 

8,53 16,5

7 

9,0

1 

9,7

9 RMSE [Wh] 

Mean 

value 

4,33 8,77 4,3

6 

4,8

3 Minim

um 

0,22 0,22 0,2

0 

0,1

5 Maxim

um 

15,59 25,5

8 

16,

44 

18,

35  

datasheet values to reflect current system behavior.  

An accuracy of the considered simulation approaches 

was measured with the help of three statistical metrics: 

mean absolute error (MAE), root mean square error 

(RMSE) and simulation error ΔE (difference between 

simulated and measured energy outputs of the PV system 

in percent).  

The values of the simulation error can be positive and 

negative: positive values mean overestimation and 

negative values – underestimation. The calculated values 

of the MAE, RMSE and simulation error ΔE are 

demonstrated in the Table 2. These results are 

comparable and better referring to the simulation results 

of [4] with a mean RMSE of 80.97 W and a MAE of 

95.17 W. 

The statistical metrics also indicated that simulation 

values of the INSEL model with non-fitted PVAI block 

diverged significantly from the measured power of PV 

system. The fitting of the model improved the simulation 

results and increased the accuracy of the simulation. 

Despite the fact that the PVAI block was fitted, the 

INSEL model continued to overestimate the measured 

values, but to a far lesser extent. The datasheet based 

INSEL® model was discarded as not being suitable for 

benchmarking the auto model. 

The annual energy output calculated with the linear 

regression approach deviated from the measurements o 

by only 0.3 %. The deviation of the energy outputs 

delivered by the fitted INSEL® model and auto model 

amounted to 3.7 % and 4.7 % respectively. 

The fitted INSEL® model and auto model had one 

significant commonality: these two models 

underestimated the PV energy output in almost all winter 

months and overestimated it in summer months. The 

simulation error per day is shown in Figure 9 and per 

month is shown in Figure 11. During the summer the 

simulation error is in a much lower range as during the 

winter month. This can be accounted to the much higher 

generation. The error distribution is presented in Figure 

10. In 73% of the days, the errors are within ±20% and in 

90% of the days the error is within ±40% of the generated 
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energy. As a result, 37 days per year have a power 

prediction error of more than ±40%. Taking the annual 

distribution (Figure 9) into account, these outliers happen 

during times of low solar activity and are therefore 

representing only a small part of the energy generation. 

 
Figure 9: Values of the simulation error ΔE in % per day 

 
Figure 10: Distribution of daily simulation error ΔE in % 

over one year (365 days). 

 
Figure 11: Simulation error in percent ΔE of the fitted 

INSEL model and auto model 

Table 4: Monthly simulation error ΔE 

Month Lin. 

Regression 

INSEL fit Auto 

Model January 66,9% 43,7% -8,4% 

February 0,7% -7,5% -30,3% 

March -5,1% -0,8% -3,2% 

April -3,9% 1,4% 0,9% 

May 1,1% 7,3% 8,3% 

June 0,3% 6,5% 6,3% 

July -1,8% 4,1% 8,1% 

August -1,3% 4,8% 12,5% 

September -5,0% -0,7% 11,3% 

October 3,4% 2,8% -0,9% 

November 10,8% 66,3% -12,2% 

December 22,4% 64,5% -32,6% 

Although the annual simulation error of the auto 

model was not much higher than the annual error of the 

fitted INSEL model, the auto model underestimated the 

PV energy output in winter months up to 30 %. 

The simulation error shown in Fig. 11 and Table 3 

are comparable to [5] and [6] with simulation errors 

between 3 % and 5.2 % of simulation and measured PV 

power data in Germany. The course of the monthly 

simulation errors are consistent referring to [5] and also 

the great deviation of the monthly simulation error 

between summer and winter months are comparable 

referring to [7]. 

5 DISCUSSION AND OUTLOOK 

The presented approach proved suitable to predict the 

behavior of a photovoltaic system for an upcoming day, 

by providing at least two days of measured photovoltaic 

output. The number of previous has a large influence on 

the quality of the systems model. Especially in the second 

half of the year, the better performance of the system is 

expected for the earliest days in the dataset – therefore 

ignoring seasonal variations for longer periods of time. In 

a further optimization of the algorithm, the historic data 

timeframe used for model creation can be obtained 

dynamically by analyzing the prediction error and 

modifying the data frame time span used for model 

creation. Further the historical data could be scaled by its 

individual clear sky GHI curve, to reduce seasonal effects 

on the input data. 

Figure 12 plots the PV systems power output, 

irradiation and the modeled results of 19 days in January 

2017. Due to snow on the modules the power generation 

was far below the expectations from the radiation 

measurements. Starting Jan. 13th the auto model starts to 

adapt – as it is not using the radiation readings and only 

reacting to the changes in power output - and the 

predictions of the 19th and 20th of January represent very 

well the electric generation despite high levels of solar 

radiation. Starting on the 22nd the snow started to melt 

and the generation got back to normal. The auto model 

however needed the number of previous days (six) to 

adapt back to normal operation. This demonstrates how 

the algorithm is able to react to introduced disturbances 

(e.g. shadow of growing trees or newly build structures in 

the area of the generation site, failing strings, dust and 

dirt) without any interaction of an operator. In case of the 

snow the very short period of disturbance is not bringing 

any advantage, as the other techniques do not require re-

adaption after the disturbance is gone. The behavior of 

the fitted INSEL® model is visible in Figure 13 and the 

one of the linear regression model in Figure 14 

respectively. As the output power has no feedback loop 

to the model, the radiation and temperature 

measurements are the only indicator for the model 

calculation. Therefor beginning with the 21st the 

calculated power is instantly a very good approximation 

of the generated power. By comparison the linear 

regression model is working better in low irradiance 

situations in comparison to the fitted INSEL® model. A 

dynamic evaluation of the prediction error could reduce 

the size of the historic data frame after a radical change in 

the photovoltaic generation, allowing for faster adaption 

times. 
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Figure 12: Irradiation (orange), generated power (light green, area) and auto model prediction (dark green) for 19 days in 

January 2017 (days are given below subgraphs) from 7:00 to 17:00. 

 
Figure 13: Irradiation (orange), generated power (light green, area) and INSEL® model prediction (blue) for 19 days in 

January 2017 (days are given below subgraphs) from 7:00 to 17:00. 

 
Figure 14: Irradiation (orange), generated power (light green, area) and linear regression model prediction (red) for 19 days 

in January 2017 (days are given below subgraphs) from 7:00 to 17:00. 
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