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ABSTRACT: The fully automated and transferable predictive approach based on the long short-term memory 

machine learning algorithm is developed for the forecasting of the photovoltaic (PV) power output. The main 

challenge of this approach is using publicly available weather reports and measured PV power without any technical 

information about the PV system. Nevertheless, the developed model is able to predict the power output of the 

various PV systems for all seasons with a reasonably good accuracy. This transferability of the approach is proven by 

the prediction of the PV power for warm and cold periods and for two different PV systems located in Oldenburg and 

Munich, Germany. The mean absolute scaled error of the predictions decreases with increasing the size of training set 

and reaches its minimum by the training with 90 days.  

The PV power prediction made with the publicly available weather data is compared to the predictions made with the 

fee based solar radiation data. The usage of the solar radiation data leads to more accurate predictions even with small 

training sets. Although the model with the publicly available data needs a greater training set, it still can make 

reasonably good predictions. Therefore, it can be applied in forecast-based energy management systems. 

Key words: PV power prediction, publicly available weather reports, machine learning, long short-term memory, 

integrated energy systems, smart energy management. 

 

 

1 INTRODUCTION AND MOTIVATION 

 

The building stock in Germany is aimed to be 

virtually climate-neutral by 2050 [1]. This goal can be 

achieved by supporting of different sector coupling 

solutions and by increasing the self-consumption of 

locally generated energy. These solutions, in particular 

the coupling between electricity and mobility sectors, 

face big challenges especially for small-scale energy 

systems. One of these challenges is the development and 

integration of the energy management systems for the 

buildings.  

Such smart energy management system can have a 

significant impact especially on energy consumption of 

the commercial buildings, because this type of buildings 

has an advantage of simultaneity from loads behaviour 

and locally generated energy such as photovoltaic (PV) 

systems. But the fluctuating electricity generation from 

the PV systems challenges the energy management 

system to use a prediction of PV power output. This type 

of power prediction leads to increasing the self-

consumption, avoiding higher grid fees and efficient 

controlling of temporal coincidence between integrated 

energy systems such as PV systems and battery electric 

vehicles (BEV) or other flexible loads.  

As a continuation of the study [2] a predictive model 

based on machine learning approach is developed within 

this study for the day-ahead forecasting of the PV power 

output. This model has the same conditions as in the 

study [2]: no knowledge about PV system (except 

measured values) and publicly available weather reports 

without values of global horizontal irradiance (GHI) 

should be used as input data. The requirement to use free 

publicly available weather data can be explained by the 

assumption that most of the building integrated and grid-

connected small-scale PV systems don’t have any 

business model and they don’t generate enough revenues 

for an energy management system based on cost-

intensive forecast data. Besides using the publicly 

available weather reports the predictive model should 

also satisfy other requirements: it should operate fully 

automatically, be continuously learning, transferable to 

other PV systems and it should adapt to the changes of 

weather conditions and the PV system, such as 

degradation of the solar modules. The transferability of 

the model is investigated by the comparison between two 

different scaled PV systems located in Munich and 

Oldenburg, Germany. 

With regard to these requirements different studies 

are investigated in order to find an appropriate predictive 

approach. In recent years, more and more machine 

learning algorithms have been developed and applied for 

the time series predictions, as [3], [4] and [5] show in 

their reviews about PV power forecast techniques. In [6] 

and [7] is discussed, that especially the application of 

Long Short-Term Memory (LSTM) neural networks 

provides good results in PV power forecasting. 

Taking into account the requirements to the 

predictive model given above, classical splitting of the 

data set in training and test sets and training the model 

only once are not suitable for this study. The data set with 

the measured values used in this study is regularly 

updated with current weather data and PV measurements. 

Therefore, a re-training of the model with new data 

occurs at regular time intervals. Together with the current 

data the weather forecast is also updated regularly. After 

each update of the weather forecast the developed model 

makes updated prediction of the PV power output for the 

next 24 h. This procedure can ensure the continuous 

learning of the predictive model and adaptation to the 

possible changes.  

A benchmark for the developed approach with the 

publicly available weather data is a model, which uses 

measurements and prediction of GHI.  
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2 DATA 

 

In this section, origin, main characteristics and 

quality of input data are explained. The input data are 

divided into descriptive and target features. The 

descriptive features include historical weather 

measurements and numerical weather predictions. These 

features are used for prediction of PV power output, 

which is defined as a target feature.  

Both descriptive and target features are available in 

the period of time from May 5th 2017 until April 10th 

2018 for Oldenburg. This dataset is explored extensively 

to determine main data quality issues. 

2.1 Photovoltaic power output 

The origins of the PV power measurements used in 

this study are roof-top PV systems. The first system is in 

operation at DLR Institute of Networked Energy Systems 

in Oldenburg since November 2010. Another system is 

newly installed on a commercial building in Munich and 

generates electricity since November 2018.  

The investigated PV systems have not only different 

locations, but different installed capacities, solar cell 

types, etc. The main technical characteristics of these two 

systems are presented in Table I. 

 

Table I: Main technical characteristics of the PV systems 

Location Oldenburg Munich 

Installation year 2010 2018 

Total capacity 1.14 kWP 99.9 kWP 

Orientation 237° 177.5° 

Inclination 7° 10° 

Solar cells type a-Si mono-Si 

Nominal cell efficiency at 

standard test conditions 
6.6 % 17.9 % 

 

During the investigated period of time (see above) the 

PV system in Oldenburg generated 675.63 kWh of 

electricity. The measured values of the PV system in 

Munich are available since March 5th 2019 and from this 

time till June 30th 2019 it produced 50,740.14 kWh of 

energy.  

The technical characteristics of the PV systems are 

not considered in the predictive model and they are given 

here only for better understanding of the prediction 

results later. Only measured values of PV power output 

are used in the prediction model. These measured values 

for both PV systems are recorded with a time resolution 

of 5 minutes.  

2.2 Weather data  

There are two origins of the weather data which are 

used in the predictive model separate from each other and 

the prediction results are compared in this paper.  

The first origin is an online service 

“OpenWeatherMap” (OWM) from the company 

Openweather Ltd. The main company activities profile 

includes the providing current weather data, historical 

weather data and weather forecast of different locations 

to the developers of web services and mobile 

applications. The current weather and forecast collection 

is available free to the commercial users which present 

this meteorological data on their homepages [8]. Because 

of the public availability of the data from OWM, this data 

is called in the paper “publicly available weather 

reports”. The second origin is measurements and 

predictions of solar radiation from DLR Institute of the 

Networked Energy Systems and Energy Meteorology 

Group, Institute of Physics, Oldenburg University. This 

data is called “fee based solar irradiance data”. The data 

and its description for the year 2014 are located in [9]. 

For this study the solar radiation data is taken from the 

year 2019. 

The investigated weather data has not only different 

origins but also different meteorological parameters. 

OWM provides current and forecasted values of various 

weather parameters, like air temperature, pressure, 

humidity, cloudiness factor, wind speed, precipitation 

type, etc. But these publicly available weather reports 

don’t include values of the solar radiation. The fee based 

data from DLR and Oldenburg University, in turn, 

includes measured values of global horizontal irradiance 

(GHI), which are collected by pyranometer. It also 

contains calculated values of GHI, direct normal 

irradiance (DNI) and diffuse horizontal irradiance (DHI) 

for clear sky conditions and angles of solar zenith and 

azimuth. The GHI prediction is based on an optimized 

combination of different forecasting methods including 

satellite cloud images and different numerical weather 

prediction models [9]. This dataset doesn’t include other 

meteorological parameters, like temperature or humidity.  

Another difference between these weather datasets is 

the time resolution. The current weather data and weather 

forecast from OWM are available in 30 min and 3 h time 

resolution respectively. The measured values and 

prediction of solar radiation in the fee based dataset are 

presented in 1 h and 15 min time intervals respectively. 

2.3 Additional descriptive feature 

Because publicly available weather reports from 

OWM don’t provide measured and predicted values of 

the solar radiation, this descriptive features dataset is 

extended with an additional descriptive feature. For each 

time the maximum of PV power is calculated from the 

measured PV power values of the same time in last five 

days [2]. Then these values are inserted in the input 

dataset and used for training the model and making 

prediction. 

Calculation methodology of maximum PV power and 

optimal number of days to look back are taken from fully 

automated model in the paper [2]. 

2.4 Data exploration 

The predictive model developed within this study is a 

data-driven approach and input data, its quality and 

selection of the appropriate features from the whole input 

data play key roles for prediction accuracy. Therefore, an 

exploration of the input data is one of the main steps in 

the data pre-processing [10]. 

Firstly, all input data are explored with a goal of 

determination whether the data suffers from any data 

quality issues. Both, the current weather data from OWM 

and dataset with measured PV power output, suffer from 

missing values. Only 2.9 % of values in the OWM 

dataset are missing. The dataset with the PV 

measurements has 5.7 % of missing values. But these 

amounts are uncritical and both datasets can be used as 

input data for the predictive model. The next common 

data quality issue are outliers: OWM has only one outlier 

(humidity value) within the investigated period and PV 

dataset doesn’t have any outliers in the same period. 

According to OWM homepage humidity is calculated in 

percent and varies between zero and hundred. During 
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data exploration was determined, that humidity value on 

March 12th 2018 at 21:00 is 107%.  

Secondly the quality of the numerical weather 

forecast from OWM can also be evaluated, because the 

weather forecast is available for the whole investigated 

period of time. The prediction accuracy of OWM is 

evaluated with the help of three statistical metrics: 

 Mean Absolute Error  

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑌𝑖̅ − 𝑌𝑖|

𝑛

𝑖=1

 (1) 

 

 Root Mean Square Error 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑌𝑖̅ − 𝑌𝑖)2

𝑛

𝑖=1

 (2) 

 Symmetric Mean Absolute Percentage Error 

𝑠𝑀𝐴𝑃𝐸 =  
100%

𝑛
∑

|𝑌𝑖̅ − 𝑌𝑖|

|𝑌𝑖̅ + 𝑌𝑖|

𝑛

𝑖=1

 (3) 

𝑌𝑖– measured value 

𝑌𝑖̅ – predicted value 

𝑛 – number of values 

The meteorological parameters cover the different 

ranges: for example, cloudiness and humidity cover the 

range [0, 100], temperature covers the range [-10, 29]. In 

order to compare them with each other, all values are 

converted into the range [0, 1] using range normalization. 

Afterwards MAE, RMSE and sMAPE for all 

meteorological parameters can be calculated. The 

statistical metrics which indicate the quality of weather 

forecast from OWM are presented in the Table II.  

 

Table II: Statistical metrics of OWM forecast 

 MAE RMSE sMAPE 

 [-] [-] [%] 

air temperature 0.02 0.03 2.61 

humidity 0.22 0.26 15.45 

cloudiness 0.24 0.34 33.87 

precipitation 0.36 0.60 35.69 

 

Among all meteorological parameters temperature 

with sMAPE of about 2.6 % has the best prediction 

accuracy. The statistical errors of the cloudiness and 

precipitation make sense, because these meteorological 

parameters are the hardest to predict even nowadays. The 

accuracy of the humidity forecasting lies between 

accuracies for temperature and cloudiness. 

2.5 Correlation analysis 

Because the weather and PV datasets include only 

continuous features, it is possible to calculate the 

relationship between them with the help of covariance 

𝑐𝑜𝑣 and correlation 𝑐𝑜𝑟 metrics [11]: 

𝑐𝑜𝑣(𝑎, 𝑏) =
1

𝑛 − 1
∑ ((𝑎𝑖 − 𝑎̅) × (𝑏𝑖 − 𝑏̅))

𝑛

𝑖=1

 (4) 

𝑐𝑜𝑟𝑟(𝑎, 𝑏) =
𝑐𝑜𝑣(𝑎, 𝑏)

𝑠𝑑(𝑎) × 𝑠𝑑(𝑏)
 (5) 

𝑎, 𝑏 – features 𝑎 and 𝑏 

𝑎̅, 𝑏̅ – means of features 𝑎 and 𝑏 

𝑠𝑑 – standard deviation 

The correlation values between meteorological 

parameters from OWM and PV power output are 

presented in Table III. 

Table III: Correlation values between descriptive and 

target features 

Feature Correlation* 

Air temperature 0.43 

Humidity -0.57 

Cloudiness -0.11 

Precipitation type -0.14 

Max. PV power 0.84 
*Values close to -1 mean strong negative correlation, values close to 1 means strong 

positive correlation and values around 0 mean no correlation [10]. 

 

The correlation analysis shows that air temperature 

and humidity have stronger relationship to the PV power 

output in comparison with the other meteorological 

features. Despite the commonly perceived fact that the 

PV generation strongly depends on the current cloud 

cover, the given probability for cloudiness from the 

OWM shows almost no correlation to the measured PV 

power. The calculated maximum PV power values of the 

last five days have the strongest positive correlation to 

PV power output. 

 

 

3 METHODOLOGY 

 

There are two main approaches for the PV power 

output forecasts: performance method and machine 

learning method. The performance or physical method 

needs technical specification of the PV system and 

prediction of the solar radiation for this location. But the 

main aim of the developed predictive approach is 

obtaining the PV power output without any information 

about PV system (except historical measured values of 

the generated power) and without solar radiation 

prediction. So the performance method cannot be used 

according to the motivation of this study. The machine 

learning method doesn’t need any information of the 

system. It is the first reason for choosing the machine 

learning approach. The second reason is an absence of 

the solar radiation in the publicly available weather 

reports.  

The next step is selecting a machine learning 

technique among many techniques of forecasting the PV 

power output. The Artificial Neural Network (ANN) is 

nowadays the most used machine learning approach for 

the prediction of the PV power: in 24 % of all studies in 

[4] the researchers predict the PV power using the ANN 

models. A special architecture of the ANN, namely Long 

Short-Term Memory network (LSTM), is chosen for the 

predictive model of this study. The detailed description of 

LSTM, its functional principal and the main differences 

from classical ANN are explained in [11] and [12].  

The main reason for using of LSTM in this study is 

its ability to learn long-term dependencies that are 

typically laying in the time series. And all used input 

datasets described in chapter 2 are time series. But before 

training the model with the chosen machine learning 

technique, namely LSTM, the input data have to be 

prepared for it. The data preparation, model training and 

other main steps of the PV power forecasting are 

presented in a simplified flow chart (see Figure 1). 

To initialize the training algorithm the predictive 

model waits five days to collect enough data for 

calculation of the maximum power output (see chapter 

2.3). The continuous prediction of the PV power occurs 

in an endless loop, each iteration of which starts with a 

decision-making about re-training of the model. In case 
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of positive decision, the predictive model is re-trained 

with the updated weather data and PV measurements. 

The positive decision occurs twice per day: at 00:00 and 

at 12:00. As known from the previous chapter all input 

data used in this study has data quality issues, i.e. missing 

values and different time resolutions. Therefore, the data 

pre-processing is an unavoidable step which includes the 

following functions: detection of the double or 

completely inconsistent timestamps, imputation of 

missing values by linear interpolation, transformation of 

time resolution to 30 min, and normalization of values. 

The normalization means a scaling of the values into 

range [0, 1] using range normalization. The descriptive 

and target features are scaled separate from each other 

and the scalers are saved for further forecasting process, 

namely scaling of the input weather forecast values and 

rescaling of the values of the predicted PV power. After 

the normalization step the scaled input values can be used 

for training of the developed predictive model. This 

model has one input layer, two hidden LSTM layers and 

one output layer. 

 

 
Figure 1: Simplified flow chart of the predictive model 

 

After re-training or in case of negative decision about 

re-training, the model, which was saved after previous 

training, is used for making prediction of the PV power 

for the next 24 h. The last steps in the loop include 

rescaling of the predicted values and evaluation of the 

forecast accuracy. The evaluation is done by calculating 

of the statistical errors (see equations (1), (2), (3)). 

According to [4], the classical MAPE is adapted for the 

forecasting of the PV power output: 

𝑀𝐴𝑃𝐸 =  
100%

𝑛
∑

|𝑃𝑝𝑟𝑒𝑑 − 𝑃𝑚𝑒𝑎𝑠|

𝑃0

𝑛

𝑖=1

 (6) 

where 𝑃0 is the installed capacity of the PV system. 

Another measure for estimation of the forecast 

accuracy is the Mean Absolute Scaled Error (MASE), 

which is described in [4] and [13].  

𝑀𝐴𝑆𝐸 =  
𝑀𝐴𝐸

1
𝑛 − 𝑚

∑ |𝑃𝑚𝑒𝑎𝑠,𝑖 − 𝑃𝑚𝑒𝑎𝑠,𝑖−𝑚|𝑛
𝑖=1

 (7) 

This error differs from classical statistical errors in 

the fact that MASE is independent from the scale of the 

data. If MASE is greater than one, the used predictive 

method has poor forecast accuracy. 

Besides statistical errors the difference between the 

measured and predicted daily energies plays an important 

role. This measure is called energy forecast error and it’s 

calculated with the following equation [14]: 

∆𝐸 =
𝐸𝑑𝑎𝑖𝑙𝑦,𝑚𝑜𝑑𝑒𝑙 − 𝐸𝑑𝑎𝑖𝑙𝑦,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐸𝑑𝑎𝑖𝑙𝑦,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
 (8) 

The sign of the energy forecast errors indicates, 

whether the predictive model overestimates or 

underestimates the measured values. 

 

 

4 RESULTS 

 

In this chapter the results of the prediction with the 

publicly available weather reports and fee based solar 

irradiance data for two different PV systems are 

presented and discussed. Moreover, it is also checked 

whether the developed predictive model meets the 

defined requirements, like self-learning ability, 

transferability, etc.  

4.1 Content and sizes of the training and test sets 

Because the PV power output depends strongly on 

the weather conditions and seasons, the developed 

predictive model is checked whether it can forecast the 

PV power output for different seasons. For this purpose, 

the model is trained with the weather data of warm and 

cold periods, and then the trained model is used to make 

prediction for warm and cold periods respectively.  

Not only is the content of the training set varied, but 

also its size. Figure 2 shows four different sizes of a 

training set (7 days, 14 days, 30 days and 90 days), one 

constant size of a test set (23 days) and a general splitting 

of the whole dataset in the training and test sets.  

 

 
Figure 2: Splitting in the training and test sets 

 

As seen in Figure 2 the first prediction of the PV 

power output begins always at the same time point 

independent of the training set size. One after the other, 

the defined training set sizes are used to train the model 

and make prediction of the PV power. Then the impact of 

the training set sizes on the forecasting accuracy is 

investigated by comparison the predictions with each 

other. 

4.2 Prediction with publicly available weather reports 

The developed predictive model with publicly 

available weather reports as input data must be able to 

make reasonably good predictions of PV power output. 

Also, the model must be applied for different seasons of 

the year, different PV systems, etc. The suitability of the 

model to different seasons of the year is checked on the 

PV system in Oldenburg, because this system has enough 

weather data and weather forecast from OWM. 

Therefore, the predictive model can be tested for two 

periods of time with different weather and solar radiation 

conditions: warm period from 08.08.2017 till 30.08.2017 

and cold period from 19.03.2018 till 10.04.2018.  
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The prediction accuracy for warm and cold periods is 

displayed in Figure 3. The predictions for both warm and 

cold periods are made with the predictive model, which is 

trained with four training set sizes one after the other. All 

training sets and test sets contain the data from the 

publicly available weather reports. 

 

 
Figure 3: Distribution of daily MAPE-values of warm 

and cold seasons for four sizes of the training set 

containing the publicly available weather reports 

 

The prediction accuracies for warm and cold periods 

are presented in Figure 3 in form of boxplots with 

distribution of MAPE values. A boxplot is a very 

representative way of displaying the distribution of the 

values. The main components of the boxplot are box, 

median, whiskers and outliers. The box contains the 

middle 50 % of all values. The line in the box indicates 

the median. The lower whisker covers the range between 

the minimum and lower quartile. The upper whisker 

includes the values between upper quartile and 

maximum.  

The X-axis of the Figure 3 presents four sizes of the 

training set, which are used to train the model. The Y-

axis shows the distribution of the MAPE for the warm 

and cold period. Because the measured values of PV 

power in winter are lower than in summer, MAPE for 

winter are also lower. The scale dependent errors MAE 

and RMSE have the same disadvantage. For this reason, 

it’s important to calculate the scale-independent metric 

MASE and to use it for comparison of the prediction 

accuracy between the different seasons. The distribution 

of the daily MASE-values for two seasons and four 

training sets are also presented as boxplots in Figure 4. 

 

 
Figure 4: Distribution of daily MASE-values of warm 

and cold seasons for four sizes of the training set 

containing the publicly available weather reports 
 

It is obvious from Figure 4 that the prediction of the 

PV power in the cold period is less accurate than in the 

warm period: the MASE medians of the cold period lies 

above 1.0 for almost all training sets except the set with 

90 days and the MASE-medians in the warm period are 

about 0.90 for all training sets. One of the possible 

reasons for better prediction in the warm period is that 

solar radiation and, consequently, PV power output in the 

warm season is more stable, and cold season has a lot of 

days with strongly fluctuating solar radiation during the 

day. But the developed predictive model should forecast 

the PV power output for all seasons of the year equally 

well. In this case, only the training with 90 days ensures 

appropriate prediction accuracy for both warm and cold 

seasons: the MASE-medians of the PV power prediction 

for this training set are about 0.90 regardless of the 

season. 

After the testing whether the predictive model can 

make good PV power prediction for different seasons, the 

same model is also tested whether it can forecast PV 

power for a completely different PV system. This system 

is located in Munich, Germany, and its installed capacity 

is almost hundred times greater than the PV system in 

Oldenburg. The technical parameters of this PV system 

are presented in Table I. The power output prediction for 

the PV system in Munich is made also for 23 days from 

08.06.2019 till 30.06.2019. The data set of the Munich’s 

PV system is split in the same way as the data set of the 

Oldenburg’s PV system (see Figure 2).  

Because the installed capacity of the Munich’s PV 

systems is much greater than the capacity of the 

Oldenburg’s PV system, only scale-independent 

statistical metric MASE can be used for comparison of 

the prediction accuracy of these two systems. The 

average values of MASE for the whole test periods for 

two PV systems are displayed as dot chart in Figure 5. 

 

 
Figure 5: Average of MASE-values for two different PV 

systems in Oldenburg and Munich 

 

The predicted values of the Munich’s PV system 

have similar average values of MASE, like the predicted 

values of the Oldenburg’s system. The most accurate 

prediction occurs again after 90 days training, but 

extension the Munich’s training set to 90 days leads to 

greater improvement of the prediction accuracy. The 

Figure 5 shows not only the forecasting quality, but it 

also verifies that the developed predictive model is able 

to forecast the power output for the different PV systems 

without any technical information about these systems, 

except the measured power values.  

4.3 Prediction with fee based solar irradiance data 

In the following chapter the PV power prediction 

with the publicly available weather data from OWM is 

compared to the prediction with the fee based solar 

irradiance data. This comparison is made for the 

Munich’s PV system.  

The main difference between these two data sources 
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lies in the fact, that the publicly available weather reports 

contain only indirectly values of the GHI like cloudiness, 

and precipitation while the fee based data already has 

measurements and predictions of the GHI which are 

highly correlated with PV power output. 

The prediction of the PV power output with the fee 

based solar irradiance data is made with the same 

predictive model described in chapter 3. But unlike the 

previous sub-chapter, the predictive model makes 

training and forecasting processes with the measurements 

and predictions of the solar radiation.  

Firstly, the MASE values of the PV power 

predictions with publicly available weather reports and 

fee based solar irradiance data for all training sets are 

compared with each other, in order to find out the optimal 

sizes of the training set for each data origin. Figure 6 

shows these values. 

 

 
Figure 6: MASE of PV power predictions with publicly 

available and fee based input data. The prediction is 

made for the Munich PV system. 

 

Figure 6 shows, that the prediction accuracy of the 

model with the solar radiation data is much better using 

shorter training data sets. The extension of the training 

set with the solar radiation data from 30 days to 90 days 

leads to the increasing of the MASE. The predictive 

model makes the most accurate prediction, if the training 

set contains 14 days of solar radiation data or 90 days of 

the publicly available data. Further the PV power 

predictions with exact these training set sizes are 

compared to each other.  

The next measure for the comparison between the 

predictions, made with two data origins, is the error 

between the predicted and measured daily energies 

calculated using equation (8). The normalized 

distribution of energy forecast errors of the developed 

model which is trained with 90 days of the publicly 

available weather data and 14 days of the fee based data 

is displayed in Figure 7.  

There are two main conclusions to be drawn from 

Figure 7. The first conclusion is that the developed 

predictive model is slightly inclined to overestimate the 

measured values no matter what input data is used: about 

40 % of the energy forecast errors have negative sigh. 

The second conclusion is that the predictive model with 

the fee based solar irradiance data can predict daily 

energy more accurate than the same model trained with 

the publicly available weather reports. The energy 

forecast errors of the prediction with the solar radiation 

data vary between -10 % and 60 %, but the usage of the 

publicly available weather reports for the input data leads 

to increasing of the forecast errors in both directions: 

overestimating and underestimating.  

 
Figure 7: Normalized distribution of the energy forecast 

errors of predictions with publicly available weather 

reports (training set with 90 days) and fee based data 

(training set with 14 days). The prediction is made for the 

Munich PV system. 

 

It is relevant to consider the predicted PV power 

output not only for the whole test period, but also for 

single days. That’s why one day with fluctuating PV 

power is selected from the test set and the PV power 

values predicted by the model with the publicly available 

weather reports and fee based solar irradiance data are 

compared to the measured values. For this purpose, the 

PV power output at June 20th 2019 is chosen. The 

predicted and measured power curves for this day are 

presented in Figure 8. 

 

 
Figure 8: Measured PV power of the Munich PV system 

in comparison to the PV power predictions made by the 

model with publicly available weather reports (training 

set with 90 days) and fee based solar irradiance data 

(training set with 14 days) at June 20th 2019.  

 

The training with the solar radiation data leads to the 

fact that the model can predict single peaks and drops of 

the PV system accurately even by fluctuated PV power 

production. But the model trained with 90 days of the 

publicly available weather reports can notice not only the 

main trend of the day, but it is able to predict the rapid 

power drop in this day. 

 

 

5 DISCUSSION AND OUTLOOK 

 

The developed predictive approach is a data-driven 

method, where the quality of input data plays a key role. 

Therefore, the accuracy of the publicly available weather 

reports is investigated at the very beginning of the study. 

36th European Photovoltaic Solar Energy Conference and Exhibition

1720



The accuracy of the PV power output prediction cannot 

be better than the accuracy of the used input data. 

The evaluation of the prediction accuracy indicates 

that the machine learning approach shows suitable results 

for day-ahead PV power prediction even with the 

publicly available weather reports. Although the data 

from OWM is aimed to be used mainly on the websites 

and mobile applications, it can be also used for the 

purposes described here. This study proves also that it’s 

possible to predict the PV power output without forecast 

values of the solar radiation and without any technical 

information about PV system, except the measured power 

values. 

In the motivation of the study several requirements to 

the predictive approach are defined. The first requirement 

is a fully-automated online operation of the day-ahead 

PV power forecasting. This requirement is proven during 

the simulation, where the weather forecasts are updated 

every three hours. In the same time interval the PV power 

prediction is made for the next 24 h. The constant 

updating of the training set with current weather data and 

PV measurements results in a periodic re-training of the 

predictive model every 12 hours.  

The second requirement is a transferability of the 

model for all seasons and different PV systems. The 

suitability for different seasons is tested by the simulation 

with the data set from Oldenburg, which contains weather 

data for warm and cold periods. The comparison of the 

simulation results with these two datasets points out 

influence of seasons on prediction accuracy, and also the 

ability of the model for the adaptation to the seasonal 

weather changes. The transferability of the model to the 

PV systems with different locations, sizes and technical 

parameters is proven by prediction of the PV power for 

two completely different PV systems. During checking 

the transferability of the model, the main disadvantage of 

MAE, RMSE and MAPE is detected. Therefore, the 

scale-independent statistical metric MASE is selected to 

be applied for comparison of the forecasting accuracy 

between different seasons and PV systems. 

Afterwards the PV power predictions with the 

publicly available weather reports are compared to the 

predictions with the fee based solar irradiance data. The 

predictive model fitted with publicly available weather 

data needs more training data, in order to make relatively 

good prediction of the PV power. The best accuracy of 

the prediction with the publicly available weather reports 

occurs by the training set with data from last 90 days 

(time resolution of all data is 30 min). If the fee based 

solar radiation data is used, the training set with last two 

weeks data leads to the most accurate prediction. The 

predictive model with the solar radiation data has not 

only much better prediction accuracy, but it can also 

forecast single power peaks and drops of the PV system. 

In this study the accuracy of the developed predictive 

model with the publicly available weather reports is 

improved in different ways: selection the appropriate 

input features and machine learning algorithm, optimal 

configuration of the LSTM-network, increasing the 

training set size, etc. But the prediction accuracy may be 

also improved in the future, if publicly available weather 

data sources provide measurements and prediction of the 

solar irradiance.  

The developed predictive approach with the publicly 

available weather data is not suitable for the applications, 

which require higher accuracy and finer resolution, i.e. 

grid stabilization. But the forecasting quality of the 

developed predictive approach with the publicly available 

weather reports is suitable for other applications, like 

forecast-based energy management system for the 

commercial buildings with small-scale PV systems. This 

energy management system based on the PV power 

prediction can increase the self-consumption of PV 

system and optimize the operation of PV system and 

flexible loads, as BEVs and heat pumps. Moreover, the 

distribution of the energy demand over the day 

considering the predicted PV power output can support 

the reduction of peak loads, which excludes the 

exceeding of power limits on the house connection point 

and avoids high grid fees.  

In this study the publicly available weather reports 

and fee based solar radiation data for the predictive 

model are compared with each other only regarding to the 

prediction accuracy. As the optimal training dataset size 

in dependence of the input data origin strongly influences 

the prediction accuracy, especially in cases of disruptive 

changes like snow cover on the modules or failure of 

strings, an automatic evaluation of the prediction with a 

consequent automatic adaption of the training dataset 

length has to be implemented for a universal prediction 

approach. Additionally, the evaluation of the data origins 

by different economic metrics has to be conducted in 

order to evaluate the economic benefits of paying for the 

solar radiation data. Another goal is the combination of 

the developed machine learning approach for the PV 

power prediction with another approach for the load 

prediction. These two approaches use different 

descriptive features, different machine learning methods 

and predict different target features. In order to evaluate 

this combination of the predictions, error and uncertainty 

assessment analysis is intended to be done. Afterwards, 

these two predictive systems can be integrated in the 

energy management for commercial buildings based on a 

multi-modal-forecasting approach. 
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